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Critical phenomena in field theories at finite temperature 

Ian D Lawriet 
Department of Physics, The University, Leeds LS2 9JT, UK 

Received 18 Febmary 1993 

Abstract It is shown how renormalization-group techniques which have been successfully 
applied to critical phenomena in condensed-matter systems can be adapted to the study of 
phase transitions in field theories, at finite temperature. Explicit calculations are described for 
the simplest case of a self-interacting scala field. A systematic method of estimating the 
transition temperature to all orders of renormalized perturbation theory is given, and the WO- 

loop contribution is found. It appears, however. that there is an additional, non-perturbative 
contribution which is not determined in the present work. An improved approximation to the 
effective potential is obtained, in which the renormalization group is used to m u m  the infrared 
singularities of perturbation theory. This shows that the transition is of second order, disproving 
recent claims to the contrary. Gauge theories are discussed qualitatively. While application of 
the techniques described in this paper will probably show that the transitions in some gauge 
theories of first order, it is argued that the order of these transitions c m  probably not be 
detetermined reliably using methods currently available. 

1. Introduction 

It has been believed for some time that the symmetry which is often described as being 
spontaneously broken in gauge theories such as the stand,ard model would be restored at 
sufficiently high temperature (Kirzhnits and Linde 1972. Weinberg 1974, Dolan and Jackiw 
1974). At a certain critical temperature, the system would undergo a phase transition, 
analogous to that which is routinely observed in superconductors. Such phase transitions 
have important cosmological implications, in connection both with the inflationary scenario 
(Guth 1981, Linde 1982, Albrecht and Steinhardt 1982, Abbott and Pi 1986) and with the 
possibility of sphaleron-induced baryon-number violation in the standard electroweak theory 
(Klinkhamer and Manton 1984, Kuzmin etnl  1985, Arnold and McLerran 1987, McLerran 
1989). The study of these transitions in their true dynamical setting is rather difficult (see, 
for example, Lawrie (1988, 1989, 1992)), but an obvious prerequisite is to understand the 
behaviour of these theories in thermal equilibrium. In particular, it is important to know 
whether the phase transitions are of first order (disconfinuous) or second order (continuous) 
and to be able to estimate the critical temperatures at which they occur. 

A somewhat simpler exercise is to study the transition in scalar field theory, which is 
analogous to the Curie transition in a ferromagnet. This is valuable both as a test bed for 
methods of analysis to be applied to theories of more direct physical interest, and because 
scalar fields appear in the Higgs sector of many gauge theories. It appears from the recent 
literature~that even this simpler model is not as well (or, perhaps, as widely) understood 
as it might be. Arnold (1992), for example, asserts that no perturbative method is known 
for calculating the critical temperature beyond the one-loop result of Dolan and Jackiw 
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(1974), on account of the infrared divergences which arise in multi-loop diagrams. It does 
indeed seem to be true that no systematic method for calculating the critical temperature has 
been developed, and this is surprising, since the techniques needed to control the infrared 
behaviour have been known for more than twenty years. Carrington (1992), following 
earlier work of Takahashi (1985), has obtained approximations to the finite-temperature 
effective potentids of both the scalar theory and the standard model, and claims that the 
transitions in both theories are of first order (see also Anderson and Hall (1992), Dine et 
al (1992)). In the case of the scalar theory, it would be most surprising if this were true, 
since this theory ought to lie in the same universality class as the three-dimensional Ising 
ferromagnet, which has a second-order transition. 

The purpose of the present work is to address both these issues and, more generally, to 
set out what we believe to be the correct way of investigating critical phenomena in finite- 
temperature field theory. The key to controlling infrared divergences is the renomalization- 
group approach to critical phenomena, due largely to Wilson (Wilson and Kogut 1974; see 
also the review articles in Domb and Green (1976)) which has been elaborated in a field- 
theoretic context by Bdzin etal (1976, Zinn-Justin 1989) and others. Indeed, condensed- 
matter systems which undergo second-order phase transitions can be represented, close to 
their critical points, by an effective Ginzburg-Landau-Wilson model, which is equivalent 
to a threedimensional scalar field theory. The analysis of critical behaviour in this model 
is reviewed in section 2, where we emphasize a point of view which generalizes readily to 
thermal field theory. The methods we use for doing perturbative calculations in finite- 
temperature scalar field theory are described in section 3, while section 4 describes a 
systematic method for calculating the perturbative conwibution to the critical temperature 
to any order and exhibits the two-loop result. We find, however, that there is an isolated 
contribution, whose value cannot be ascertained, but which can probably be set to zero within 
perturbation theory. In section 5, we describe how the renormalization-group analysis which 
is well known for Ginzburg-Landau-Wilson models can be adapted (in what we believe to 
be a novel way) for use in thermal field theory, and obtain the one-loop effective potential 
of the scalar theory. What the one-loop approximation means depends on how one decides 
to organize the perturbation theory, and our approximation is, essentially, equivalent to that 
obtained by Carrington. However, we show that when infrared divergences are properly 
resumed, there is no evidence of a first-order transition. 

The renormalization-group analysis uses, in intermediate stages, a renormalized mass 
and coupling constant which are only indirectly related to those which parametrize the zero- 
temperature theory in physical terms. To illustrate how finite-temperature properties of the 
theory can be calculated in terms of the temperature and of zero-temperature parameters, we 
obtain in section 6 an explicit expression for the expectation value of the scalar field. We 
find, as expected, that it approaches zero continuously as T + Tc with the same power-law 
behaviour that characterizes the magnetization of a ferromagnet. 

We give no explicit calculations for gauge theories, but in section 7 we discuss 
qualitatively what might be expected. In (3 + 1)-dimensional theories where symmetry 
is spontaneously broken via the Higgs mechanism, we expect that the methods advocated 
in this paper will, typically, indicate the Occurrence of firstader transitions. On the other 
hand, we argue that such indications are not necessarily reliable, and that no method known 
to us can settle the issue. 

Finally, our conclusions are sunmarized in section 8. 
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2. Critical phenomena in Ginzburg-Landau-Wilson models 

The archetypical example of a system undergoing a second-order phase transition is an Ising- 
like ferromagnet. Near its critical point, such a system can be represented as a Euclidean 
scalar field theory, whose action 

approximates the reduced Hamiltonian ,8X. The field $0 represents the spin density of 
the magnet, while pi is linear in temperature and A0 is a constant. Subscripts ‘0’ in (2.1) 
distinguish the bare quantities from their renormalized counterparts introduced below, and 
d is the spatial dimensionality. In contrast to a genuine quantum field theory, the bare 
mass is the primary temperature-dependent variable, and the transition between ordered 
and disordered phases occurs at a value p&(ho) for which the inverse propagator at zero 
momentum vanishes: 

(2.2) 

The value of p& can be determined formally in perturbation theory by writing, say, 

a counterterm which subtracts the (ulhviolet-divergent) value of each term at p 2  = ro = 0. 
Then ro is proportional to (T - Tc), where T, is the exact critical temperature. In the context 
of dimensional regularization, it is actually consistent and convenient to set p& = 0. We 
shall not do this, however, because in finite-temperature field theory the critical temperature 
must be found by extracting a finite, temperature-dependent contribution to p&, and it will 
be important to keep track systematically of all the potential divergences. 

Below four dimensions, individual terms of sufficiently high order in the perturbative 
expansion of rs(0; Ao, ro) diverge in the infrared limit ro + 0. Of particular interest is 
the case d = 3, where all contributions beyond two-loop order diverge. It is therefore not 
immediately apparent that rf’ really vanishes at ro = 0. Nevertheless, it does vanish, and 
one finds for small ro 

(2) 2 - @ A  2 ro ( P  - , o1 pot) =o. 

@2- - pOe+ro, 2 using ro as the squared mass in the unperturbed propagator and treating p& as’ 

where y is a universal exponent, given by y PX 1.24 in three dimensions. To establish this 
result, and to estimate the value of y ,  one uses the renormalization.group to control infrared 
divergences, by relating the propagator of the near-massless theory to that of a massive 
theOry. 

We define a renormalized theory by introducing a renormalized field, @ ( x )  and 
renormalized parameters p* and A, related to the bare quantities by 

where K is an arbitrary parameter with the dimension of mass, ensuring that A is 
dimensionless. From (2.6). we see that h is independent of p2 and (2.5) shows that p2 
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is directly proportional to ra, and thus to T - T,. The conditions which might be used to 
determine the renormalization factors Z+, Z, and Z, will be discussed below. 

In the usual way, the fact that the unrenormaIized Green functions are independent of 
the renormalization scale K leads to a renormalization group equation for the renormalized 
one-particle irreducible functions, namely 

where 

(2. IO) 

Solution of this equation by the method of  characteristics together with dimensional analysis 
yields, for N = 2 and p = 0, the relation 

r(’)(O; A, EL’, K )  = p(E)(tK)’r(’)(O; i (6) ,  F ’ ( $ ) / ( ~ K ) * ,  1) (2.11) 

where i ( 6 )  is the solution of 

(2.12) 

with the initial condition i (1)  = A, while b’(6) and P ( 6 )  satisfy similar,equations, which 
can be integrated to give 

(2.13) 

(2.14) 

To regularize the infrared divergence at p2 = 0, we may choose the free parameter 6 to 
satisfy the condition 

@’(6) = ($K)’ (2.15) 

giving 

r(”(0; A, / * 2 , ~ )  = p(t)(6K)2r(z)(o; i($), 1,1). (2.16) 

In view of (2.13) and (2.15), we expect 5 to vanish in the infrared limit p* + 0. The utility 
of our formal manipulations now rests on the fact that, given an appropriate renormalization 
prescription, i(() approaches a fixed-point value A* in this limit. For then r(*)(O; A*, 1 ,  1) 
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is a finite constant, and the infrared singularity is isolated in the prefactors. Assuming the 
existence of an infrared-stable fixed point, we find 

P(a; A, e’, K )  - p’? (2.17) 

where 

Y = (2 - r1)/(2 - U). (2.18) 

with u = u(A*) and q = q(h*). 
Since pz cx ro, we can now establish (2.3)~and find an estimatefor y ,  provided that the 

appropriate fixed point can be located in pertnrbation theory. To dothis, we n e d a  small 
parameter, E ,  such that A* = O(E) .  It was discovered by Wilson and Fisher (1972) that the 
appropriate small p parameter is 

~ = 4 - d .  (2.19) 

In four dimensions, infrared divergences are logarithmic. A double power series expansion 
of Green functions in powers of A0 &d E leads to a sum of powers of Inro, and the role of the 
renormalization group is to resum these logarithms into the overall factor r l ,  with corrections 
involving higher powers of ro. If this procedure is to be carried out systematically, it is 
clearly necessary to construct a renormalized theory whose Green functions remain finite in 
four dimensions ( E  = 0), even though we may eventually be interested in three dimensions 
( E  = 1). Thus, our renormalization prescription must be such as to remove the ultraviolet 
divergences which appear in four dimensions, which is. of course, the usual field-theoretic 
situation. 

Many renormalization schemes would serve our immediate purpose, but we adopt here 
a scheme which will be especially useful in the analysis of thermal field theory. To ensure 
that the renormalization constants Zi are independent of p’, we consider the theory with 
p’ = K~ and impose on the renormalized Green functions the conditions 

P ) ( o  A,  K’, K )  = K’ (2.20) 

(2.21) 

(2.22) 

The Zi defined in this way are, by dimensional analysis, functions only of A, and will 
serve also to remove divergences from the theory with other values of p’. It would be 
superfluous to record details of the explicit implementation of this scheme in the present 
context. Calculations using a variety of renormalization schemes may be found in the 
literature (see, for example, Brkzin et al (1976), Lawrie (1976), Zinn-Justin (1989)). One 
finds that the fixed point does indeed exist. Although the functions W(A), u(A) and A*(€) 
are all schemedependent, the expansion of y in powers of E is scheme-independent and 
has the form y = 1 + c/6 -t O(E’). 

~ A renormalization scheme such as that given by (2.20)-(2.22) can alternatively be 
implemented by setting E = 1 and calculating directly in three dimensions (Parisi 1980). 
There are some obvious pitfalls. For example, A* is not particularly small, so low orders of 
perturbation theory do not give very accurate results. Also, while the coefficients in the E 
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expansion for a quantity such as y are independent of the chosen renormalization scheme, 
the truncation errors incurred at a given order of Perturbation theory in a fixed-dimension 
calculation are scheme-dependent. Suppose, moreover, that we wish to check the equality 
of the two sides of (2.16). Within the E expansion, each side can be expanded as a double 
power series in A and E ,  and the results must agree. With E fixed at 1, however, the left-hand 
side can be expanded only in powers of A and the right-hand side in powers of 1. These are 
two different expansions, which cannot be expected to agree term by term. Despite these 
difficulties, the two methods agree well when pursued with sufficient vigour, at least in 
respect of the estimation of critical exponents. The results reviewed by Zinn-Justin (1989) 
indicate excellent agreement, not only between these two field-theoretic expansions but also 
with other statistical-mechanical formulations and with experimental data on a variety of 
condensed matter systems. For reasons which will become apparent, it is difficult, if not 
impossible, to construct the E expansion consistently in thermal field theory, and we shall 
rely on a variant of the fixed-dimension approach. 

Of particular interest in thermal field theory is the effective potential (thermodynami- 
cally, the free energy density). Anticipating a close analogy with thermal field theory, we 
now estimate this potential for the Ginzburg-Landau-Wilson model in three dimensions and 
verify that the transition is indeed second order. The point at issue is the following. At a 
given temperature (which here meam a given value of p2) the thermodynamically stable 
state of OUT system corresponds to an expectation value U of the field which minimizes the 
effective potential Vet(u). At low temperatures, the global minimum is at a non-zero value 
of U ,  say E i ,  corresponding to spontaneous symmetry breaking, while at sufficiently high 
temperature it is at U = 0. If ij approaches 0 continuously at the transition temperature, the 
transition is of second order. Another possibility is that, for some range of temperature, 
the effective potential possesses two minima, at U = 0 and at U = 0. In that case, we 
would identify a first-order transition, where the expectation value changes discontinuously 
from 6 to zero, at a temperature where V&) = V&(O). We have identified the critical 
temperature as p’ =~O, where the second derivative of Ves vanishes. Suppose that at this 
temperature, the global minimum of Vea is at some non-zero S. As p2 increases, the point 
U = 0 becomes a local minimum, and Vert($) increases. This would indicate a first-order 
transition at some positive value of p2. 

In three dimensions, a direct calculation at one-loop order yields 

where U denotes the exact expectation value of the renormalized field and 

(2.24) 2 m (U) = p2 + $ K € A U ~  

is the mass appearing in the unperturbed propagator for the shifted field 4 - U. At p2 = 0, 
the last term in (2.23) is proportional to -\uI3. Taken at face value, this indicates a global 
minimum at non-zero U, and hence a first-order transition. However, (2.23) cannot be taken 
at face value, because the effective expansion parameter is (K/m(u))A and higher-order 
terms are increasingly infrared divergent at small m. To determine the true behaviour of 
Vet(u) when p2 = 0 and U is small, we must use the renormalization group to control these 
infrared divergences. 

The effective potential satisfies a renormalization-group equation similar to (2.7) which, 
when p2 = 0, has the solution 
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with CJ(~) = P ' / z ( ~ ) u .  To isolate the infrared divergences in the prefactor, the appropriate 
choice of is now given by the condition 

C(<)(.$K)'-d/z = 1 (2.26) 

and we find 

where the exponent 6 is 

d + 2 - ~  
d - 2 1 - 7 '  

s =  

(2.27) 

(2.28) 

At one-loop order, q ( i )  is zero, and in three dimensions, the best estimates give 7 = 
q(A*) F;: 0.04 (ZiM-Justin 1989). If we ignore V ,  we find that V e ~  - u4 in four dimensions, 
but Vef - u6 in three dimensions. If we now use (2.23) to estimate the right-hand side of 
(2.25) explicitly, we find C K  m U' and 

(2.29) 

with A* = 16x/3. (Explicit details of the renormalization-group functions will be given in a 
generalised form below.) While the overall factor u6 in this expression is certainly correct, 
the coefficient is not particularly reliable, for the rea.sons discussed above. (Note, however, 
that the rather large value of AX must be taken in conjunction with a factor 1 /2x2 which 
arises from each loop integral, giving an effective expansion parameter A*/2x2 0.85.) 
Nevertheless. we see that the effective potential of the massless theory has a single minimum 
at U = 0, so that the transition is indeed second order, as all theoretical treatments and 
experimental investigations agree. 

3. Scalar field theory at finite temperature 

In the imaginary time formalism, 
by the Euclidean action 

field theory at finite temperature T = p-'  is described 

where d is again the number of spatial dimensions, and @ is periodic in  t with period @. (We 
have suppressed the subscript indicating a non-renormalized field to avoid a proliferation of 
indices below.) It is equivalent to a (d + 1)-dimensiona1,Ginzburg-Landau-Wilson model, 
for a system of finite extent p in the last dimension. Such models have been studied for a 
long time in the context of classical and quantum statistical mechanics (see, for example, 
Barber and Fisher (1973), Young (1975), Hertz (1976), Lawrie (1978a,b), Lawrie and Fisher 
(1978)) and it is found that their asymptotic critical behaviour is the same as that of the 
&dimensional model. This is because the infrared sin-plarities which dominate the critical 
region depend on cooperative effects on the length scale of the correlation Ien-4 (or inverse 
mass) which becomes much larger than 6. 
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For this reason, it will be helpful to examine the high-temperature limit ,9 + 0 of the 
action (3.1). Since the field is periodic, we may expand it as 

where the Matsubara frequencies are U,, = 2nn/,9. When ,9 + 0, all field modes except 
n = 0 have large effective masses, mi = U,' + pt, and are suppressed. In this limit, we 
obtain an effective d-dimensional action 

where 

(3.4) 

(3.5) 

We shall be particularly interested in Green functions whose external frequencies are all 
zero, and for the unrenormalized one-particle irreducible functions, we obtain 

where 
The evaluation of Feynman diagrams is most often accomplished by using the Matsubara 

representation, with propagators (U: + k2 + &'. For the purpose of evaluating Green 
functions with external frequencies equal to zero. we find it more convenient to avoid 
frequency sums by using the imaginary time representation, with the propagator 

is the function calculated from the action (3.3). 

where ok = (kz + !J')'/~ and f lk  denotes the Bos-Einstein occupation number 

nk = [exp(pwk) - I]-'. (3.8) 

Each vertex canies an imaginary time~argument. Because of the periodicity, thc imaginary 
time of one (arbitrary) vertex in a diagram may be set to zero, while all others are integrated 
between 0 and p.  For example,. the integral corresponding to the two-loop diagram of figure 
l(b) is 
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where 01 denotes o&, , etc and k3 = kl + kz.  It is useful to express the integrand of this and 
similar expressions as a polynomial of orders (in this cases = 2) in the ni: 

(3.10) 

The leading term, with non,, reproduces the corresponding integral in the zero temperature, 
(d+l)-dimensional theory. In the limit ,9 + 0, we have ni + (,90,)-'. The terms of order 
s combine to give a factor of ,9-' times the corresponding integral in the theory defined by 
(3.3). I t  is not hard to see that the factors ,5'" are just such as io reproduce the powers of 
,9 in (3.5) and (3.6). 

(a  1 ( b )  (C) ( d )  

Figure 1. Low-order contributions to the propagator. 

4. Calculation of the critical temperature 

We asserted in the last section that the critical behaviour of the finite-temperature field theory 
(3.1) is the same as that of the d-dimensional Ginzburg-Landau-Wilson-like model (3.3) 
to which it reduces in the high-temperature limit. The cleanest way to analyse the infrared 
singularities in this d-dimensional model is, as we have seen, by means of an expansion 
about d = 4. However, the ultraviolet behaviour of the original model (3.1) is the same 
as that of the zero-temperature, (d + 1)-dimensional theory, which is not renormalizable 
for d > 3. Therefore, the E expansion isnot available to us, if we wish to remain within 
the class of  renormalizable field theories. In particuliir, we would like to estimate the 
critical temperature of the theory in terms of the renormalized mass and coupling constant 
of the zero-temperature, (d + 1)-dimensional theory, which would be impracticable within 
an expansion about d = 4. In the condensed-matter context. one can indeed obtain some 
useful information about the dimensional crossover by working near d = 4 (Lawrie 1978b) 
and introducing a momentum cutoff to eliminate ultraviolet divergences. However, the 
usefulness of this approach is limited to analysing infrared behaviour inside the critical 
region. The information which would allow one to estimate the critical temperature of  the 
underlying condensed-matter system is not contained in the effective Ginzburg-Landau- 
Wilson Hamiltonian. In what follows, therefore, we will set 

d = 3 ~ - E  , , "  (4.1) 



6834 I D  b r i e  

with a view to dimensional regularization of ultraviolet divergences but our interest will be 
in the limit E --f 0, and the analysis of infrared behaviour will be via the three-dimensional 
approach. 

Rather than try to estimate the critical temperature directly, we generalize the discussion 
of section 2, by finding the critical value, & ( h ~ ,  p ) ,  of pi for which @ ) ( p  = 0) vanishes 
at a given temperature p - I .  This relation can then be inverted to find the critical temperature 
corresponding to a given mass. In the first instance, we write 

P; = P ~ ~ ( A o ,  00) + AP&@o, B )  + ro (4.2) 

so that r f ) ( p  = 0) vanishes at ro = 0. A further multiplicative mass renormalization 
will then be needed, both to eliminate uhaviolet divergences and to exponentiate the 
infrared singularities. As before, our perturbation series uses ro as the squared mass in the 
unperturbed propagator, while the other two terms in (4.2) contribute counterterm vertices. 

To see how the critical mass is to be identified, we consider in detail the evaluation of 
the Feynman diagram of figure I@), which is the one-loop contribution to the propagator. 
It is proportional to the integral J = .I1 + 52,  where 

dd+'k 1 
(ZZ)~+' (k2 + ro) (4.3) 

(4.4) 

and wk = (kz + rg)'lz. We are interested in the behaviour of these integrals at small values 
of ro. The first may be written as 

(4.5) 

The first term, which formally represents the value of 51 at ro = 0,~is an ill defined integral, 
which contributes to p&(Ao, w). The second is convergent, for 1 < d < 3, and we can 
legitimately rescale k by a factor of r;l2, to give 

For d near 3, 52 yields an infrared convergent inte-4 at ro = 0. Subtracting this value, we 
get a remainder which vanishes at ro = 0, in which k can again be rescaled, giving 

where Gk = (k2+1)'/2. Although the second integral does not have a power series expansion 
in p f i ,  its leading term as p f i  + 0 is a finite integral times ( p a - ' .  

This kind of analysis can be repeated for every integral contributing to @). For a term 
of order A:, we will find an expression of the form 

I = 10 +r:-nf12~l + 12(p) + r ~ - n f ' 2 1 , ~ ~ .  (4.8) 
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The integral IO is an ill defined quantity, which will contribute to p&(Ao. w), while 11 
has poles at E = 0, which will be absorbed by a multiplicative mass renormalization. 
The integral I,(@) is convergent for d = 3 - E, but generally has poles at E = 0, while 
k(p.,h$ diverges as @,h$-" as + 0, perhaps with an extra logarithmic factor. 
This last assertion follows from the fact that we must recover the propagator of the high- 
temperature theory (3.3) with coupling constant XO = p'-'ho. In this theory, all integrals 
are convergent, with the exception of those shown in figure 1. The diagram of figure l(b) 
is logarithmically divergent in three dimensions, and its 13 diverges as In(p&)/(p2ro). 
Higher-order diagrams containing this subintegral will inherit the extra logarithm. To phrase 
this point more accurately, the limit which led from the (d + I)-dimensional action (3.1) 
to the d-dimensional action (3.3) is not strictly valid when the d-dimensional theory has 
divergences, and we recover the three-dimensional theory only up to logarithmic corrections. 

The integrals of type 10 in (4.8) are precisely the quadratically divergent integrals of the 
(d+ 1)-dimensional, zero temperature theory, and will be absorbed in &(ho, 00). We now 
claim that the temperature-dependent contribution to the critical mass, Ap&(Ao, p )  in (4.2) 
is obtained by subtracting the integrals of type 22(p). To be sure, the remaining integrals 
of type 13( , !? f i  diverge as ro 4 0, and increasingly so at higher orders of perturbation 
theory. However, these divergences are of the same kind as those encountered in section 
2, and we expect to be able to exponentiate them into an overall positive power of ro 
as in (2.3). In the next section, we shall exhibit a renormalization-group scheme which 
accomplishes this, and confirm that the critical mass is given by the above prescription, 
up to an isolated contribution from the diagram of figure I@), which may indicate an 
undetermined, non-perturbative correction. For now, we assume that *is is so. and obtain 
the two-loop approximation to the critical temperature. 

We need only the diagrams of figures I(a) and l(b). Those of figures I(c) and l(d) 
(where the cross denotes the one-loop value of pi,) cancel at ro = 0 . ~  Consider, then, 
the expression for the two-loop integral given in (3.10). Only the terms with one n give 
infrared-convergent integrals at ro = 0, and it is precisely these terms which contribute to 
A&(Ao, p'). Taking into~account also the oneloop contribution (4.41, we obtain 

~ 

~ 

1 Ik'l f 1k"l x I - -  - [ / z d  jk'lIk''l[([k'l + [k"[)2 -k2] (4.9) 

where k" = k + k'. The subintegral in the two-loop part has a logarithmic ultraviolet 
divergence (at d = 3) and the expression clearly need renormalization. 

To obtain a physically meaningful result, we need to express the critical temperature 
in terms of parameters of the renormalized zero-temperature theory. To this end, we first 
define a renormalized mass 6i as the pole of the zero-temperature propagator: 

We also need a renormalized coupling constant, which is independent of any arbitrary 
renormalization scale, and the following is a convenient, if unconventional choice. We 
normalize the field @ ( x )  so that the renormalized propagator has unit residue at its pole: 

(4.11) 
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and denote by G its zero-temperature expectation value. Then our renormalized 
dimensionless coupling constant is 

.i = 3hi=-"/Ei=. (4.12) 

We now have 

p; = p&(A0, 03) - ;2m(i.)fiz (4.13) 

where 2m = 1 + O ( i )  is the renormalization constant~implied by (4.10). Theoretically, at 
least, we can adjust pz to have the value (4.9) corresponding to a critical temperature , T I .  

The corresponding value of hi2, say r?z:(i, ,9) is found by equating the right-hand sides of 
(4.9) and (4.13). After evaluating i,, expressing ho in terms o f 2  and hi, and setting d = 3, 
we find the relation 

(4.14) 

where c is a finite integral which we are unable to compute in closed form. On inverting 
this relation, we estimate the critical temperature corresponding to a zero-temperature mass 
hi as 

(4.15) 

The term of order i2 could be computed numerically, but its actual value is unenlightening, 
and depends on the precise definition of i. The leading term agrees with the old result of 
Dolan and Jackiw (1974), though this is commonly expressed in terms of a mass parameter 
pz, such that p; = pz + O(A) = -r?z2/2 + O(h). 

5. Renormalization and the effective potential 

It remains to construct a renormalization-group scheme which will correctly exponentiate 
the infrared singularities in the critical region. Let us first consider what is required. We 
hope to obtain a generalization of (2.16), which relates a Green function with a very small 
mass to one with a non-vanishing mass. In the finite-temperature theory, we have an extra 
parameter, ,9 with dimension (mass)-', so the new relation must be of the form 

rYo; A,  2, p, K) = p(mw2r(Z)(o; .W, 1; w, 1). (5.1) 

The infrared singularity will be correctly isolated in the prefactor on the right-hand side, 
provided that h . 8 )  approaches an infrared-stable fixed point as + 0 and that the remaining 
Green function remains finite and non-zero in the limit &!?K + 0. 

Now, we anticipate that the critical singularity is that of the &dimensional, high- 
temperature theory, with bare coupling constant & = ,9-'Ao as in (3.3, so it should be 
the renormalized version of which approaches A*. To achieve this, the normalization 
condition which replaces (2.22) should, at least for high temperatures, have the form 

~~ 

F ( 4 ) ( 0  i., 2, K) = K'+5 (5.2) 
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where now E = 3-d. According to (3.6), this implies for the renormalized finite-temperature 
vertex function 

P(O; A,  K 2 ,  p ,  K ) Z ( p K ) K f j l .  (5.3) 

At low temperatures, on the other hand, a normalization condition such as 

r"(0; A,  K', ,B, K )  = ~ K ' A  (5.4) 

is appropriate for removing the ultraviolet singularities of the full (d+ 1)-dimensional theory. 
To interpolate between these two descriptions, we introduce a function g(pK) such that 

g(o3) 1 g(,8K)%oPK (5.5) 

but which is otherwise arbitrary, and set 

ho = Z A ( ~ ,  p K ) K ' A g ( p K ) .  (5.6) 

The function Z*(A, B K )  will be chosen in such a way that r(4) is finite at E = 0 and that 

Iim ( P K ) - ' ~ " ( o ;  A, K', p ,  K )  = (5.7) 

but any prescription which satisfies these conditions will serve. The result of calculating any 
physical quantity should, of course, be independent both of the value of the renormalization 
scale K and of the particular function g(.). However, the truncation error incurred at a given 
order of perturbation theory is well known to be renormalization-schemedependent, and 
explicit results may well depend on these quantities. In the calculations we shall present, 
though, it will not prove necessary to make any specific choice of g(.). 

Similarly, the additive mass renormalization in (4.2) will be supplemented by a 
multiplicative renormalization. However, there is a difficulty associated with the logarithmic 
divergence in figure I(b) in the thee-dimensional theory, which requires an extra additive 
renormalization. We therefore express pi as 

@-PO 

& = &(b. B )  + f @ o ,  P! ro) + Z J L  BK)P' (5.8) 

with 

ro = Z,,& BK)P' (5.9) 

Iim r(')(o; A, K', ,6, K) = K'. 

where f(Ao, p ,  ro) and Z,, are chosen so that r(').is finite at E = 0 and 

(5.10) 

In general, the analogous modification of (2.21) will define a wavefunction renormalization, 
but our explicit calculations from now on will be restricted to one-loop order, where no 
wavefunction renormalization is required. 

It should be clear that these conditions serve to make r"' on the right of (5.1) finite 
in the limit $ + 0 as required. Moreover, the expansion parameter in the renormalized 
perturbation theory is hg(PK). So, consider the form.(4.8) of integrals contributing to I?, 

BK-tO 
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and replace ro by K ~ ,  as is appropriate for determining the Zj. The terms of type Io and 
12 are absorbed into p&. The terms of type I :  will contribute to Z,, and so will most of 
the remaining integrals of type Z3. Each of these type 13 integrals will be multiplied by a 
factor ~ “ ( B K )  and the combination has a finite limit as ,BK -+ 0, except that the troublesome 
diagram in figure l (b)  would cause logarithmic divergences. 

This diagram involves an integral of type I3 whose leading behaviour as p f i  + 0 in 
the unrenormalized theory is of the form 

(5.11) 

where c1 and cz are finite constants. In the limit p + 0 with E > 0, this becomes 
B-’r;‘c1/E. This ultraviolet pole occurs, of course, in the threedimensional Ginzburg- 
Landau-Wilson model, and is the only divergence in the dimensionally regularized theory. 
It has been discussed in detail by Bagnuls and Bervillier (1983, 1985; see also Symanzik 
(1973)), who conclude that it must be absorbed into pio (equation (2.5)) rather than into Z,. 
Indeed, the role of Z, is to renormalize insertions of the composite operator @. This could 
alternatively be achieved by replacing (5.9) with a condition on Wc2)/apZ,  which contains 
no pole at two-loop order, though it naturally contains the subdiagram in question at higher 
orders. If we take the limit E + 0 in (5.11), on the other hand, we get the expression 

p-’(--cl 1n(p2ro) + cz). (5.12) 

It will shortly become clear that we do not want residual logarithmic divergences in 2, as 
BK + 0. We therefore choose f in (5.8) to remove the logarithm: 

f(b A TO) = c’&B-’1n(B2ro) (5.13) 

where c‘1 includes the appropriate weight factor. Because this subtraction is made at the level 
of the bare theory, it will subtract the logarithm from every occurrence of the subdiagram 
in the renormalized theory. 

With this prescription, all of the renormalization factors Zj contain the poles of the 
(4 - E)-dimensional theory, but otherwise have finite limits as P K  + 0. Let us see whether 
the required fixed point exists. At one-loop order, a suitable pair of renormalization factors 
is 

(5.14) 

The renormalization-group functions are finite at E = 0 and we find 

(5.17) 
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The running coupling constant in (5.1) is the solution of 

with X(1) = A. It is given by 
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(5.18) 

(5.19) 

and we see that, as t + 0, it approaches the same fixed-point value A* = 16n/3 that 
we found for the three-dimensional Ginzburg-Landau-Wilson model. The running mass is 
defined as in (2.13), except that now has an additional dependence on e'@. It will be 
convenient to have an estimate in closed form for fi'. To this end, we omit the l n t  in 
(5.19). which is small compared with T/.$BK for 0 < 6 < 1, which is the range of interest. 
With this approximation, we obtain 

(5.20) 

with U = 2/3 and a = 3hg(jJ~)/16n. When t is small, therefore, we have fiz(t) - ~ ' 6 '  
where, in general, U = U@*,  0). Note that this fixed-point exponent would not exist if we 
were to include in 2, the logarithmically divergent terms discussed above. 

We now return to our earlier discussion of the critical temperature. To determine the 
renormalization factors Zi, we considered the theory with fiz = K', for which (5.8) becomes 

(5.21) 

where r&) = .&(A, ~?K)K'. From the normalization condition (5.10). it is clear that r(') 
vanishes when K* = 0. .To be confident that we have identified~the critical temperature 
correctly, however, we must assure ourselves that the last two terms in (5.21) vanish when 
K' = 0. As we have seen, the coefficient of A" in Z, has a finite limit (treating the poles 
of the zero-temperature theory as unimportant constants for this purpose). Moreover, at a 
fixed value of AO, A approaches A* as K -F 0. Term by term, therefore, Z,K' does vanish. 
This point can be carried a little further by using the renormalization group to estimate the 
behaviour of Z,. We have 

P; = P&@O, B )  + f ( ~ o ,  B ,  + ~ ~ ( 1 .  @K)K' 

(5.22) 

which integrates to give 

We conclude that, when K --f 0 with A0 fixed, Z, - K-" and 

&(A, BK)K' - K * - ~ .  (5.24) 

Our one-loop estimate above gave U = 2/3, so it would appear that (2  - U )  is positive, 
and Z,K' does indeed vanish as K --f 0. In fact, (2 - c) is equal to U-', where Y is the 
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correlation-length exponent, for whose value in three dimensions the best available estimates 
give U = 0.63. The remaining term f ( h 0 ,  ,!?, r&)) is more problematic, however. If we 
insert ho = hg(,!?K)Zi(h, P K )  and ro = Z,(h, ,!?K)K’ into (5.13) and expand in powers of 
the renormalized coupling constant, the overall factor g2(,5’K) ensures that f does vanish 
term by term. On the other hand, the original expression diverges when ro + 0 with ho 
and ,!? fixed. We conclude that, although the critical temperature we calculated in the last 
section is correct within renormalized perturbation theory, there may be a non-perturbative 
correction, which we are unable to determine. 

We are now in a position to study the effective potential in the critical region. Takahashi 
(1985) and Carrington (1992) claim that the form of the effective potential is such as 
to indicate a first-order transition, but we shall show that this claim is erroneous, for 
precisely the reason explained in section 2. Observe, first of all that, because of the 
counterterm p&(ho, p) in (5.8), the mass parameter fi2 in our renormalized perturbation 
theory vanishes at the critical temperature. At one-loop order, Carrington achieves the same 
effect by resuming ring diagrams, but at higher orders, all other self-energy diagrams also 
contribute to pic(&, ,!?). The effective potential may be calculated by the same method as 
before. At one-loop order, with d = 3, and with the approximation that the effective mass 
(p2  -+ hgu2/2)‘/2 is much smaller than the temperature T = ,!?-I, we find 

(5.25) 

With some minor differences arising from our renormalization scheme, this is the same as 
the result given by Carrington. The term of interest is the last one which, when p2 = 0, is 
proportional to - 1 ~ 1 ~ .  As explained in section 2, however, we cannot conclude that V e ~  has 
a local maximum at v = 0 and a minimum at some non-zero value of U, because the infrared 
singularities which occur at higher orders make the expression (5.25) completely unreliable. 
As before, the renormalization goup can be used to exponentiate these singularities. We 
obtain the relation 

vefr(h, 0, ,!?, K ,  U )  = ($K)d+l veff(z(t), 0, t P K ,  1 ,  [g($,!?K)1-’/2) (5.26) 

(Wd-’ = g($BK)a2(t )  (5.27) 
to ensure that the effective mass remains non-zero. At oneloop order, there is no 
wavefunction renormalization, so +(e) = v. Using (5.25) to evaluate the right-hand side of 
(5.26) and setting d = 3, we obtain for small U 

where 5 must now be determined by the condition 

veri = ,!?-I- ** [ 1 - (g* - + &*I ( p l ’ 2 U y .  
4! 

(5.28) 

As might have been expected, this is identical to (2.29), except that U has been replaced by 
fi%, which reflects the relation (3.5) between the fields of the d- and (d + 1)-dimensional 
theories, and an overall factor of p-’. The latter factor may be accounted for by considering 
that the effective potential is the effective action, evaluated with a constant classical field, 
divided by the volume. In the case of the three-dimensional Ginzburg-Landau-Wilson 
model, this volume is the three-volume /d3x whereas in thermal field theory it is the 
four-volume ,3 Sd3x. 
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6. The order parameter: an illustrative calculation 

We illustrate how our formalism may bc applied to calculatc quantities of physical interest 
by obtaining an expression for the order parameter (that is, the expectation value (6)) as 
a function of temperahne. This expectation value is not directly measurable, but it is of 
interest here, insofar as it approaches zero continuously as T + Tc, illustratinz the second- 
order character of the transition. 

In  dealing with phenomena occurring below the critical temperature, where symmetry is 
spontaneously broken, it is convenient to redefine the mass parameter p2 by a factor -l/Z, 
in which case (5.8) becomes 

P i  = &,(ho. - +&(A, t%)LL2. (6.1) 

Then the expectation value U = (6) has the form 

where V = 1 +O(one-loop). The renormalization group, together with dimensional analysis 
implies a relation analogous to (2.16), namely 

provided that we ignore q ,  which is zero at one-loop order: In the now-familiar way, we 
regularize the infrared divergences in~the loop corrections by choosing t to satisfy the 
condition b2(t) = (CK)' ,  whereupon (6.2) becomes 

(6.4) 

Approximate solutions for ;(e) and ,Liz(<) were given in (5.19) and (5.20). For,brevity, we 
write these as f i 2 ( ~ )  = p 2 ~ ( ~ )  and h ( < ) g ( t g K )  = Ag/L( t ) ,  where g means g ( B K ) .  we 
now have 

(t)L($)v(%t), 1, C B K ,  1). (6.5) U 2 =- 3 ~ ~ - ' ~ ~ - ~ / ~  
A&? 

We would like to convert this expression into a form which depends only on temperature, 
and  on^ the mass and coupling constant of the zero-temperature theory. To this end, we 
reintroduce the zero-temperature parameters i and defined in (4.10)<4.13). Moreover, U 
is the expectation value of a field whose normalization depends, in general, on the arbitrary 
renormalization scale K,. To get a more meaningful result, we therefore define 30 to be 
the expectation value at temperature ,!?-I of the field whose normalization is fixed at zero 
temperature by (4.11). Thus, + as T + 0. We now have two renormalization 
schemes, which are related by the parameters of the bare theory. That is, 
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The latter relation can be written at one-loop order as 

but (4.14) shows that the factor (1 - Tz/T:) will be modified at higher orders by logarithms 
of T/T,. 

The resulting expression for iig contains ratios of Z factors, which must have finite 
limits at E = 0. We can therefore take this limit to obtain 

.~ 

(6.9) 

where 

(6.10) 

If we were able to evaluate t?~ exactly, it would necessarily be independent both of K and 
of the function g(.). Indeed, the whole renormalization-group analysis would be redundant. 
As it is, however, we have to find M, L and U independently, each at some finite order of 
perturbation theory. This means that the truncation emor we incur depends on K and g(.) 
and so, therefore, does our result. The dependence on g(.) can be eliminated by observing 
that in (6.9) hg occurs only in one-loop terms. According to (6.6), therefore, hg can be 
replaced by i, the error being formally of a higher order than that to which we are working, 
and this is what we do. There does not appear to be any simple strategy for removing 
the dependence on K ,  so we must choose a value for it. Fortunately, the requirement that 
Sfi = ii at T = 0 (or P = 00) is sufficient to fix this value. Unsurprisingly, we find that the 
appropriate value is 

- ~ = m .  (6.11) 

Our final result for Gp is a little cumbersome to write down. It may be expressed as 

(6.12) 2 - - 2 z  Sfi - t L(tW(0. 

For U ( t )  we find 

where 

with 6 k  = (k2 + 1)'". The quantity x ( c ) g ( t p f i )  is now given by i/L(t),'where 

(6.14) 

(6.15) 
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and < is determined by the condition 

CI(pA)-’ + 1 - CI 
c~(fflh)-1 + 1 - (L. 1 (6.16) 

where now a = 3i/16x and a is still equal to 2/3. 
It would now be possible to compute $8 using numerical methods to evaluate the integral 

(6.14) and to solve (6.16) for 6. When Tc is expressed in the form (4.15), one finds that 
the ratio $/O is a function of the two dimensionless variables and PA. The detailed 
numerical form of this function is not particularly enlightening, however, and we content 
ourselves with describing the limits T + 0 and T + T,, which can be found analytically. 
In the limit T + 0 (and p + CO), the solution of (6.16) is 5 = 1 and I(pA) vanishes. 
One then easily finds that 26 = $ as advertised. To study the limit T + T,, it is convenient 
to define 

1- -  ( 5). (6.17) 

For small t ,  we find from (6.16) that 6 - t”(Z-u). We then find that L(<) -e-’ and U ( t )  
approaches a finite constant. Overall, therefore, we obtain 

where the exponent P is given by p = 1/2(2 - a) = 3/8. We recall that 1/(2 - a) 
is the correlation-length exponent U. In general, if one takes into account the non- 
trivial wavefunction renormalization which arises at higher orders, giving rise to the Fisher 
exponent q, the value of p in d spatial dimensions is 

(see, for example, Br6zin et al (1976). Zinn-Justin (1989)), and the best estimate of its 
value in three dimensions is p = 0.33. 

7. Gauge theories 

A detailed study of phase transitions in gauge theories at finite temperature is beyond the 
scope of this paper, but several observations can be made. The simplest gauge theory is 
scalar quantum electrodynamics, whose threedimensional version constitutes the Ginzburg- 
Landau-Wilson model of superconductivity. Experimentally, the superconducting phase 
transition always appears to be second order, as the tree-level potential would indicate. 
Nevertheless, it was suggested by Halperin et al (1974) that the transition might in fact 
be first order, although the magnitude of the order-parameter discontinuity would be very 
small in a real superconductor. 

Their argument was closely related to a well known study of scalar QED by Coleman 
and Weinberg (1973). which establishes the possibility of spontaneous symmetry breaking 
by radiative corrections. In the one-loop effective potential of the Ginzburg-Landau-Wilson 
model or, equivalently, of the zero-temperature field theory, a single gauge loop contributes 
a term proportional to in three dimensions or to v 4 h v  in four dimensions. As in 
(2.331, this i s  not in itself a reliable indication of a first-order transition. However, the 
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renormalization-group argument we have employed in this paper also breaks down, because 
the required infrared-stable fixed point does not exist. More generally, one can consider 
a model in which N/2 complex scalar fields are coupled to the same Abelian gauge field. 
Within the E expansion about four dimensions, one finds that a fixed point exists only 
for N > 365.9 + O(E).  The absence of the expected fixed point has often been taken 
as a signal of a first-order transition. Indeed, one can still use the renormalization group 
to control infrared singularities, and hence construct an improved approximation to the 
effective potential (Lawrie 1982) and this appears to confirm that the transition is of first 
order. 

In the absence of unforseen circumstances, one would expect the phase transition in a 
(d+ 1)-dimensional thermal field theory to be of the same kind as that in the corresponding 
d-dimensional Ginzburg-Landau-Wilson model, as we have seen in detail for the scalar 
theory. On this basis, it seems likely &at the phase transition in the standard model, say, 
might be of first order, as has be en^ claimed by several authors, though the method of 
analysis used, for example, by Carrington (1992) is not adequate to establish this, and a 
detailed renormalization-group study is needed for any particular model. 

Unfortunately, the matter does not rest here. A theory with continuous symmetry, 
such as the O(N)-symmetric scalar theory can be cast in the form of a nonlinear 0-model 
(formally, by taking the limit h + 00 and +’ + -00 in such a way that the weight 
factor exp[-p‘r$’/Z - hb4/4!] becomes S@’ - U’)). This theory is expected to have the 
same phase transition as the original one (see, for example, Zinn-Justin (1989)). In the 
nonlinear theory, however, the appropriate expansion parameter is E = d - 2 (Brkzin and 
Zinn-Justin 1976a, b). Renormalization-group techniques can again be applied, though in a 
somewhat different form, and the critical temperature appears as an infiared-unstable fixed 
point. For the Abelian Higgs model, this approach was studied by Lawrie and Athorne 
(1983), who found that the required fixed point exists for any N. indicating a second-order 
transition. Thus, it appears that scalar electrodynamics has a first-order transition for spatial 
dimensionalities near four, but a second-order transition near two dimensions. What happens 
in the physically relevant case of three spatial dimensions has not, to our knowledge, been 
settled, and we knowsf  no way of obtaining a conclusive answer. Quite probably. the Same 
unsatisfactory situation obtains in connection with other gauge theories. 

8. Summary and discussion 

At a second-order phase transition, the effective mass of a field theory vanishes or, 
equivalently, the characteristic distance over which correlations decay becomes infinite. 
A (3 + I)-dimensional field theory in thermal equilibrium is, in effect, a Euclidean 
system of finite extent in one of its~dimensions, and the infrared singularities which 
characterize its critical behaviour are those of the three-dimensional theory. In the Ginzburg- 
Landau-Wilson model, which is essentially obtained by ignoring the finite dimension, 
renormalization-group methods allow the infrared divergences of standard perturbation 
theory to be  resummed, by relating Green functions of the critical theory to those of the non- 
critical theory, for which perturbation theory is more reliable. In its most systematic form, 
this resummation relies on an expansion about four infinite dimensions, where the infrared 
singularities are logarithmic. On the other hand, once one knows that this is possible, direct 
calculations in three dimensions can be undertaken, though they aregenerally less accurate at 
low orders than the E expansion. In finite-temperature field theory, an expansion about (4+1) 
dimensions is not practicable (at least, in any obvious way) since ultraviolet divergences 
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make the theory non-renormalizable, but we have shown how the fixed-dimension approach 
can be generalized to deal with this case. 

We have shown how the critical temperature of the scalar theory can be calculated, at 
any order of perturbation theory, in terms of parameters of the zero-temperature theory. 
The renormalization group does not enter directly into this calculation, which involves 
only infrared-finite contributions to the two-point function, but it does assure us that the 
infrared divergences will not disturb the result. Wefound, however, that there may be a non- 
perturbative correction to our result, which we are unable to determine: The renormalization 
group is of vital importance in obtaining a reliable estimate of the effective potential. A 
direct calculation of Vea(u) in perturbation theory seems to show that, at the temperature 
T,~for which its second derivative vanishes at U = 0, there, is a global minimum at some 
non-zero U. This would indicate a first-order transition at a temperature somewhat higher 
than T,. On.using the renormalization group to resum infrared singularities, however, one 
finds that this appearance is misleading, and that the true minimum is indeed at U = 0. Thus, 
the transition is actually of second order, and occurs at T,. This conclusion is confirmed 
by an explicit calculation of the expectation value of the field as a function of temperature, 
which shows that this expectation value vanishes continuously, with the expected universal 
power law, as T -+ Tc. 

We believe that these conclusions are definitive for scalar field theory, although explicit 
calculations at higher orders than we have considered might provide a valuable check. 
Certainly, a determination of the non-perturbative contribution to the critical temperature 
is desirable. Possibly, some modification of the renormalization scheme used here might 
allow it to be found self-consistently, but we have not succeeded in doing this. In gauge 
theories the situation is less certain. The Ginzburg-Landau superconductor lacks, at least 
near four spatial dimensions, the infrared-stable fixed point which is normally associated 
with a second-order transition. The indications are that the transition in, this model is of 
first order near four spatial dimensions, but of second order near two dimensions. Almost 
certainly, the transition in (3 + 1)-dimensional scalar electrodynamics is identical to that in 
the three-dimensional superconductor, whose order cannot be reliably determined, and the 
same is probably true of other gauge theories. 
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